The Dihalides of Group IVB Elements J. L. Margrave, K. G. Sharp and P. W. Wilson Department of Chemistry Rice University Houston, Texas 77001 The elements of Group IVB (C, Si, Ge, Sn, and Pb) all possess the ground state configuration \underline{ns}^2p^2 . This configuration suggests that oxidation states of either two or four are especially probable for the elements in the group, and to a greater or lesser extent, both states are observed for each number. There is a continuous increase in the stability of the divalent state with respect to the tetravalent state with increasing atomic number, so that with carbon the (II) - oxidation state is restricted to the very reactive carbenes and to "special" compounds such as isonitriles, whereas (II) is the prevalent state in the inorganic compounds of tin and lead. Two factors probably contribute to this increase in stability of the divalent state. For one, the M-X bond energies generally decrease down the group, with the exception that the bonds between silicon and the most electronegative elements are usually stronger than the corresponding bonds to carbon. Secondly, repulsive interactions between non-bonding and bonding electron pairs are larger for the smaller atom at the top of the group. There has been some uncertainty as to the relative electronegativities of the various members of Group IVB. The current consensus seems to favor the order $C > Ge > Si \sim Sn > Pb$, but the difference in electronegativity between Si and Pb may be small. At any rate, electronegativity differences seem inadequate to explain the monotonic increase of stability of the (II) state as one goes down the group. The "inert pair" concept has sometimes been advanced to account for the extra stability of atoms or ions which contain a lone pair of s-electrons (e.g. Hg^{+1} or Tl^{+1}); however, this effect does not seem to be particularly operative in Group IV, since the 3rd ionization potentials are similar for the elements Si through Pb. The chemistry of the dihalides of the Group IVB elements has developed along several lines. One approach has been to use the dihalides as reactive intermediates in liquid phase studies. For example, CCl2 is produced by the alkaline hydrolysis of chloroform; this CC12 can then react With other reagents in the system. A very large amount of work has been done on this type of study and since it is already extensively described in the literature 4 it will only be briefly discussed in this article. The dihalides of Group IVB elements, particularly CF2, are also intermediates in a number of gas phase reactions. Another important approach has been to design experiments that produce the dihalides in conditions that prevent their immediate reaction with other reagents in the system. permitted the direct measurement of some of their physical properties and also the determination of some of their descriptive chemistry. It has been principally this technique that has been used in the chemistry department of Rice University, Houston. In this article some of the results obtained using all of these approaches are described although the last technique will be emphasized. ### A. Difluoromethylene CF₂ is unique among carbenes because of its high stability and low reactivity. Investigations of the ultraviolet absorption spectrum of CF₂ have led to estimates of roughly 10 milliseconds to one minute for the half-life of CF₂ at pressures in the region of one atmosphere. The gasphase molecule does not react with BF₃, N₂O, SO₂, CS₂ or CF₃I at 120° C. 5 The nature of CF_2 is perhaps best presented in separate sections discussing its preparation, structure and physical properties, reaction chemistry, and reaction kinetics. <u>Preparation</u>. The majority of the preparations of CF_2 reported in the literature involve photolytic or pyrolytic processes. Table I contains a representative list of methods used to produce CF_2 . Most of the reactions produce the molecule in its singlet ground state, but the reaction of 0 (3P) atoms with C_2F_4 and the decomposition of CF_4 in a glow discharge appear to produce triplet CF_2 . In this connection it is interesting to note that the reaction of Hg (3P) atoms did not give rise to triplet CF_2 ; the authors suggested that the triplet C_2F_4 initially formed passes through an excited singlet prior to dissociation. Structure. The ultraviolet emission spectrum of CF₂ was first examined by Venkateswarlu²², who prepared the molecule by passing an uncondensed transformer discharge through CF₄. An extensive band system between 3250 and 2400 Å was observed. The similarity of the band system to that of NO₂ suggested that a non-linear triatomic molecule was responsible for the spectrum. Venkateswarlu identified the band system with the transition $^{1}B_{2} \rightarrow ^{1}A_{1}$. The ultraviolet absorption bands were examined by Laird, Andrews and Barrow 23 who obtained much the same results as Venkateswarlu although they suggested that the band numbering previously assigned might be incorrect. They demonstrated that the observed system involves the ground state of CF_2 . Since their equipment design permitted examination of only long-lived species, they estimated that the half-life of CF_2 is approximately 1 second at a pressure of 1 mm Hg. | Starting Material | Products | Multiplicity | Reference | |---|--|--------------|-----------| | Photolytic methods: | | | | | $CF_2=CF_2 \xrightarrow{h\nu}$ | 2CF ₂ | singlet | 6 | | $CF_2=CF_2 \xrightarrow{hv}$ (Hg-sensitized) | 2CF ₂ | singlet | 7 | | $CF_2N_2 \xrightarrow{hv}$ | $CF_2 + N_2$ | singlet | 8 | | $0 (^{3}P) + C_{2}F_{4} \xrightarrow{hv}$ | $CF_2 + CF_2O$ | triplet | 9 | | Fluorocarbons $\xrightarrow{h\nu}$ | CF ₂ + various compounds | singlet | 10 | | $C1F_2COCC1F_2 \xrightarrow{h\nu}$ | CF ₂ + C1COCF ₂ C1 | singlet | 11 | | Pyrolytic methods: | | | | | $CF_3COCF_3 \xrightarrow{600^{\circ}C}$ | CF ₂ + CF ₃ COF | singlet | 12 | | CF_2 CF_2 CF_2 CF_2 | $CF_2 + CF_2O$ | singlet | 13 | | | CF ₂ + FSn(CH ₃) ₃ | | 14 | | $(CF_3)_3PF_2 \xrightarrow{120^{\circ}C}$ | $CF_2 + (CF_3)_2PF_3$ | singlet | 5 | | $CF_2-CX_2 \xrightarrow{160-200^{\circ}C}$ | $CF_2 + CX_2 = CX_2$ | singlet | 15 | | X ₂ | | | | | Fluorocarbons> | CF ₂ + other products | | 10 | | Other methods: | | | | | CF ₄ glow discharge | CF ₂ + several other spec | cies triplet | 16 | | 7 | CF ₂ | singlet | 17 | | CHF ₃ shock wave | CF ₂ + HF | unknown | 18 | | CF ₂ =CF ₂ shock wave | CF ₂ | unknown | 19 | | CF ₂ -CF ₂ r.f. discharge | CF ₂ | unknown | 20 | | $CH_2 + CF_2 = CF_2 \longrightarrow$ | $CF_2 + CH_2 = CF_2$ | unknown | 21 | More recent experiments 24 have resulted in the re-assignment of the band system origin, the extension of spectral measurements to shorter wavelengths, and the correlation of the observed absorption spectra solely with the bending modes of the two states involved. In addition, Simons 25 and Margrave 26 have suggested that the spectra are due to the transition $^{1}B_{1} \leftarrow ^{1}A_{1}$, rather than $^{1}B_{2} \leftarrow ^{1}A_{1}$, as originally proposed. Mathews 27 has analyzed the rotational fine structure of the band at 2540 $^{\circ}A$, and obtained the following values for molecular parameters: upper state, <FCF = 134.8 $^{\circ}$, $^{\circ}A_{1} = 1.30$ $^{\circ}A_{2} = 1.30$ $^{\circ}A_{3} = 1.30$ $^{\circ}A_{4} = 1.30$ $^{\circ}A_{4} = 1.30$ $^{\circ}A_{4} = 1.30$ $^{\circ}A_{4} = 1.30$ $^{\circ}A_{5} = 1.30$ $^{\circ}A_{5} = 1.30$ $^{\circ}A_{5} = 1.30$ $^{\circ}A_{5} = 1.30$ The infrared spectrum of matrix-trapped CF_2 (produced by the photolysis of difluorodiazirine, $\mathrm{CF}_2\mathrm{N}_2$) has been examined 28 . The three fundamental vibrational frequencies were determined to be 668, 1102, and 122 cm $^{-1}$. The intensities of the two stretching fundamentals were sufficiently strong to permit observation of the corresponding absorption of $^{13}\mathrm{CF}_2$, from which the bond angle of CF_2 was calculated to be approximately 108° . The gas-phase infrared spectrum of CF_2 has been observed by Pimental and Herr 29 . Difluorodiazirine was flash-photolyzed and the infrared spectrum of the products was immediately taken with a rapid-scan infrared spectrometer. Absorptions due to CF_2 were seen but the resolution of the instrument was insufficient for determination of the symmetry of the absorptions. The half-life of CF_2 was estimated to be 2.5 m secs. Powell and Lide 30 observed the microwave spectrum of CF₂ using a fast-flow microwave spectrometer. The CF₂ was prepared by passing a weak r.f. discharge through C₂F₃Cl, CF₄ or (CF₃)₂CO. The absence of fine structure and observable Zeeman shifts provided evidence that the CF₂ was in the singlet ground state. The bond angle was determined to be 104.9° and the bond length to be 1.30 Å, in complete agreement with Matthews' values (see ref. 27). For comparison, the C-F bond length in CF₄ is 1.317 \pm 0.005 Å. 31 The Heat of Formation of CF2. A number of experimental approaches has been used to determine $\Delta H_f^{\ o}$ (CF2). The most common technique involves mass spectrometric measurement of appearance potentials. The earlier appearance potential measurements indicated that $\Delta H_f^{\ o}$ (CF2) = -30 ± 10 kcal. mole⁻¹, ³² but it now appears this value is too high. Margrave and co-workers ³³ reported a mass spectrometric study of the C_2F_4/CF_2 equilibrium between 1127-1244 o K. Both second and third-law determinations of the enthalpy of reaction for $C_2F_4 \rightarrow 2CF_2$ were made, yielding -39.3 ± 3 kcal. mole⁻¹ for $\Delta H_f^{\ o}_{298}(CF_2, g)$. Two groups have studied the pyrolysis of CF₂HC1 and have calculated $\Delta H_f^{O}(CF_2)$ to be -43 and -39.1 kcal. mole⁻¹,
respectively. ³⁴ Shock waves were also used to study the formation of CF₂ from C₂F₄ and CHF₃; values of $\Delta H_f^{O}(CF_2) = -39.7 \pm 3.0$ and -40.2 ± 4.0 kcal. mole⁻¹ respectively ^{18,19} were obtained. Other methods that have been used to determine $\Delta H_f^{O}(CF_2)$ include the pyrolysis of CF₄ on graphite ³⁵ and the observation of predissociation in ultraviolet absorption spectra ³⁶. Reaction Chemistry of CF_2 . The reactions of CF_2 that have been studied to date fall conveniently into two catagories: reaction in solution and reaction in the gas phase. Recently, however, there have also been some investigations of the reactions of matrix-isolated CF_2 . No attempt will be made in this article to recount the large number of investigations into solution-phase dihalocarbene chemistry; a brief summary of dihalocarbene solution chemistry will be given in the following section. The interested reader is directed to several reviews of this $\mathrm{subject}^4$. In solution, dihalocarbenes are often produced from the basic hydrolysis of haloforms: CHXYZ + OH $$^ \rightarrow$$ CXYZ $^-$ + H₂O CXYZ $^ \rightarrow$ CXY + Z $^-$ Hine has shown that the relative ability of substituent halogens to enhance trihalo anion formation is $$I \sim Br > C1 > F$$ and that halogens facilitate carbene formation in the order $$F \gg C1 > Br > I$$ This latter sequence has been attributed to the relative ability of the halogens to supply unshared pairs to the electron-deficient carbon atom, as represented by the hybrids shown below $$|\underline{\overline{x}} - \overline{c} - \underline{\overline{x}}|$$ $\oplus \underline{\overline{x}} = \underline{\overline{c}} - \underline{\overline{x}}|$ $|\underline{\overline{x}} - \underline{\overline{c}}| = \underline{\overline{x}} \oplus$ In the case of difluoromethylene, Hine suggested that formation of the carbene is so favored that dehydrohalogenation occurs in a concerted fashion, with no carbanion intermediate. Several other methods of generating dihalocarbenes in solution have been reported; the most useful of these appears to be the thermolysis of phenyltrihalomethyl mercury compounds as reported by Seyferth and co-workers ^{37a}, although other organometallic precursors have also been employed ^{37b}. $$\phi$$ - Hg - CF₃ \rightarrow ϕ - Hg - F + :CF₂ ϕ - Hg - CCl₂Br \rightarrow ϕ - Hg - Br + :CCl₂ The advantages of this method of carbene synthesis are that reaction can be carried out in neutral solution, and that reaction yields are often dramatically improved. Thus, although reactions of dihalocarbenes generally do not give rise to products corresponding to single bond insertion, Seyferth has reported insertion of phenyl(trihalomethyl) mercury-generated carbenes into C-H, Si-H, Ge-H, O-H, B-C, Hg-X, Sn-X, Si-Hg, Ge-Hg and Sn-Sn bonds³⁷. Much of the literature regarding dihalocarbenes is concerned with reactions of CX₂ with olefinic substrates to give 1,1-dihalocyclopropane derivatives. These reactions occur with retention of stereospecificity, as expected for singlet carbenes. Dihalocarbenes also exhibit strong electrophilic behavior towards olefins, and will often not react with weakly nucleophilic species if stronger nucleophiles are present. Gas-phase Reactions of CF_2 . In the gas phase, CF_2 is remarkably unreactive as compared to CH_2 . This situation has been dramatically demonstrated by Mahler^{5,38}, who did not observe reaction between CF_2 (as produced from the pyrolysis of trifluoromethylfluorophosphoranes at 120°) and BF_3 , H_2 , CO, NF_3 , CS_2 , PF_3 , SO_2 , CF_3I or N_2O . Mahler did report the following reactions: $$CF_2 + I_2 \rightarrow CF_2I_2 + CF_2ICF_2I + I(CF_2)_3I + CF_2 - CF_2$$ CF_2 $$CF_2 + HC1 \rightarrow CF_2HC1$$ $$CF_2 + Cl_2 \rightarrow CF_2Cl_2$$ $$CF_2 + O_2 \rightarrow COF_2$$ $CF_2 + MoF_6/WF_6 \rightarrow CF_4 + reduced metal fluorides$ $$CF_2 + CF_3C \equiv CCF_3 \rightarrow CF_3 CF_2 \rightarrow CF_3 - CCF_2 C-CF_3$$ $$CF_2 + F_3PO \rightarrow CO + PF_5 + COF_2 + PF_3$$ The CF_2/I_2 reaction is complicated by the fact that I_2 reacts with C_2F_4 to give $CF_2I-CF_2I^{39}$. The HCl reaction is interesting since, as Mahler points out, it is the reverse of a reaction often used to produce CF_2 . The reaction of CF_2 with O_2 is surprising in light of the many kinetic studies of the reactions of CF_2 in the presence of O_2 , to be discussed later. Mitsch 40 studied the reaction of CF $_2$ produced from the photolysis of CF $_2$ N $_2$, and reported the following reactions $$\begin{array}{l} {\rm CF_2} \, + \, {\rm CI_2} \, \to \, {\rm CF_2CI_2} \\ \\ {\rm CF_2} \, + \, {\rm I_2} \, \to \, {\rm CF_2I_2} \\ \\ {\rm CF_2} \, + \, {\rm N_2O_4} \, \to \, {\overset{F}{\rm F}} \, {\overset{NO_2}{\rm NO_2}} \\ \\ {\rm CF_2} \, + \, {\rm NO_2C1} \, \to \, {\overset{F}{\rm F}} \, {\overset{C_1}{\rm NO_2}} \\ \\ {\rm CF_2} \, + \, {\overset{F}{\rm F}} \, {\overset{N}{\rm N}} \, \to \, {\rm CF_2=N-N=CF_2} \, \overset{{\rm CF_2}}{\to} \, {\rm CF_2=N-N} \, {\overset{{\rm CF_2}}{\stackrel{{\rm CF_2}}{\to}}} \, {\overset{{\rm CF_2}}{\to}} CF$$ Perfluoro-1,4-pentadiene and perfluoropropene undergo similar reactions. Atkinson and McKeagen 41 reported two similar reactions: Behind a shock wave CF_2 reacts with NO^{42} : $$2CF_2NO \rightarrow 2CF_2O + N_2$$ $$CF_2NO + NO \rightarrow CF_2O + N_2O$$ CF₂ also reacts with NOF. In this case the CF₂ used was prepared by the photolysis of C_2F_4 and the reaction was complicated by the reaction between C_2F_4 and NOF. 43 $$C_2F_4 + NOF \xrightarrow{h\nu} F_-N_-O \xrightarrow{CF_2} CF_3-N_-O \xrightarrow{CF_2-CF_2} CF_2-CF_2$$ ${\tt Mastrangelo}^{20}$ has reported some interesting work on the reactions of ${\tt CF_2}$ trapped in matrices. A stream of octafluorocyclobutane was passed through a radio frequency discharge and condensed on a liquid nitrogencooled cold finger. The resultant deposit was an intense dark blue which persisted until the cold finger warmed to ca. 95°K. When radical generation times exceeded 15 minutes, however, the blue condensate slowly changed to a red color believed to be associated with CF_3 radicals. On warming, the blue condensate gave rise to C_2F_4 and unreacted \underline{c} - C_4F_8 , but no polymeric residue. When chlorine was condensed on the blue deposit before warmup, CF_2Cl_2 and CF_2Cl-CF_2Cl , with smaller amounts of CF_3Cl , were observed in the products. Mastrangelo attributed the blue color to the presence of CF2 radicals, and the ensuing red color to the disproportionation of ${\tt CF}_2$ to ${\tt CF}$ and CF3. No determination of the spin state of either the gas-phase or condensed species was reported; in view of the intense color of the condensate, the absence of polymeric radical chains, and the proposed disproportionation of CF_2 to CF and CF_3 , the presence of triplet CF_2 seems quite possible. Milligan and Jacox 44 have recently reported an elegant synthesis of ${\rm CF_2}$ in an argon matrix. Carbon atoms, produced from the photolysis of cyanogen azide, were allowed to react with molecular fluorine, and the presence of CF_2 was demonstrated from infrared spectra. Use of radiation effective in photolyzing F_2 produced CF_3 from the reaction of the CF_2 with atomic fluorine. Kinetic Studies of the Gas-Phase Reactions of CF2. As mentioned above, when gaseous CF_2 is produced in the presence of substances with which it does not react, the products obtained are tetrafluoroethylene and perfluorocyclopropane⁵. The decay of CF_2 was originally thought to follow zero-order kinetics (that is, removal of CF_2 by means of diffusion to the walls of the apparatus)^{45,23}. A study of the flash-photolysis of C_2F_4 by C_2F_4 by C_2F_4 , however, showed that CF_2 decay follows second order kinetics, and a rate constant of C_2F_4 (liter/mole·sec) at C_2F_4 was determined for dimerization of CF_2 to $CF_2=CF_2$. Dalby further observed that the rate of disappearance of CF_2 was independent of the concentration of oxygen, C_2F_4 or C_2F_4 at pressures as high as 40 cm for the latter two. He was thus able to set an upper limit to the rate constant for the reaction of CF_2 with these molecules of approximately C_2F_4 liter/mole·sec. Cohen and Heicklen 46 investigated the mercury-sensitized photolysis of C_2F_4 and were able to determine the rate constant for the reaction $$CF_2 + C_2F_4 = \underline{c} - C_3F_6$$ to be $k_{C_2F_4} = 6.4 \times 10^7$ exp (-7500/RT) or 4.5×10^3 liter/mole sec at 25° C. The ratio of $k_{C_2F_4}$ to the rate constant for dimerization was also found: $k_{C_2F_4} / k_{\text{dim.}}^{\frac{1}{2}} = 395 \text{ exp (-6700/RT) (liter/mole sec)}^{\frac{1}{2}}$. This ratio has a value of approximately 5.6×10^{-3} at 25° C. Although this method of CF₂ production apparently does not yield triplet CF₂, the molecule may be generated <u>via</u> the reaction of ground-state oxygen atoms (3P) with C_2F_4 to yield 3CF_2 and $CF_2O^{9,47}$. Triplet CF_2 , like the singlet molecule, can add to C_2F_4 to form \underline{c} - C_3F_6 . Triplet CF_2 can also revert to singlet CF_2 through a bimolecular reaction involving an excited C_2F_4 intermediate: $$2^{3}CF_{2} \rightarrow C_{2}F_{4}^{*} \rightarrow 2^{1}CF_{2}$$ The self-annihilation reaction occurs much faster than addition to C_2F_4 . If molecular oxygen is added to the system, 3CF_2 may then react with O_2 to give CF_2O_2 . This reaction is slightly faster than the combination of 3CF_2 . The CF_2O_2 radicals produced in the reaction with O_2 are removed <u>via</u> $$2CF_2O_2 \rightarrow 2CF_2O + O_2$$ The presence of triplet CF_2 was inferred from the fact that in this system all of the CF_2 species are scavenged by O_2 if the O_2 pressure is greater than 5 torr, coupled with previous observations
that the rate of reaction of singlet CF_2 with O_2 is extremely slow 6,7,48 . Modica and LaGraff¹⁹ have conducted a series of examinations of the production and kinetic aspects of the reactions of CF_2 in shock waves. C_2F_4 , diluted 1:100 with argon, was shocked over the temperature range $1200-1800^{\circ}K$. Ultraviolet absorption of the shocked mixture revealed that dissociation of the C_2F_4 to CF_2 was virtually complete within 1 µsec. The dissociation reaction was found to be second order, $$^{1}_{2} d \left[CF_{2} \right] / dt = K_{Ar} \left[C_{2}F_{4} \right] \left[Ar \right], \text{ with } K_{Ar} = 7.82 \times 10^{15} \text{ T}^{^{1}_{2}}$$ $$exp (-55690/RT) cc/mole \cdot sec$$ The equilibrium constant for the reaction $\text{C}_2\text{F}_4 \rightleftarrows 2\text{CF}_2$ was determined to be $$log K_c (mole/cc) = 69432/2.303RT + 4.62$$ The value of ΔH_f^0 (CF₂) calculated from the measured heat of the above reaction agrees well with that obtained by other methods 33,34 , and lends strength to the assumption that equilibrium conditions prevail in the system. When oxygen was added to the C_2F_4/Ar mixture, no reaction with the O_2 was observed below $1400^{\circ}K$. At temperatures above $1700^{\circ}K$, however, the bimolecular oxidation of CF_2 to (initially) CO+2F+0 was found to occur with $$K_{\text{ox}} = 2.82 \times 10^{10} \text{ T}^{\frac{1}{2}} \exp (-13280/\text{RT})$$ At temperatures in the range $2600-3700^{\circ} \text{K CF}_2$ itself decomposes to CF + F, with equilibrium expressed by $$\log K_c \text{ (mole/cc)} = \frac{-103000 \pm 5700}{2.303 \text{ RT}} - 0.41 \pm 0.11$$ # B. Other Carbon Dihalides Despite the large body of literature discussing the preparation and reaction chemistry of dichloromethylene in solution, very few reports of the isolation of the molecule have appeared. The technique of forming Group IV dihalides from the reduction of the tetrahalide with the metal has proved to be of great utility for production of SiX2 and GeX2, but has not been successful in the case of carbon. Schmeisser and Schröter studied the reaction of CCl_4 with activated charcoal at 1300° , and originally 48areported isolation of CCl2 itself as a mobile, volatile liquid boiling at -20°C. A subsequent publication 48b retracted the claim, explaining that an equimolar mixture of dichloroacetylene and chlorine had comprised the "CC12." The paper further stated the CC14 was in fact undergoing a surfacecatalyzed pyrolysis rather than reaction with the charcoal. Carbon is known to catalyze the decomposition of CCl_4 to $C + 2Cl_2^{49}$. Schmeisser et al. obtained the following products from CCl4 pyrolysis (yields in parentheses): C(35); C_2C1_2 (20); C_2C1_4 (40); C_2C1_6 (5); C_4C1_6 (0.1); C_6C1_6 (0.1). Dichloromethylene was presumably the precursor of the C2Cl4, although the latter compound could have resulted from disproportionation of C_2Cl_6 to Cl_2 and C_2Cl_4 . Blanchard and LeGoff⁵⁰ studied the decomposition of CCl_4 on a tungsten ribbon in the temperature range $1300-2000^\circ K$. The CCl_4 vapor, at a pressure of 10^{-5} mm Hg, was made to flow past the ribbon and directly into the ionization source of a mass spectrometer, which was then utilized to analyze the products. Between the temperatures of 1300 and 1600° , the major pyrolysis products were CCl_2 and Cl_2 ; between 1600 and 1900° CCl_2 and Cl prevailed. When a <u>carburized</u> tungsten ribbon was used virtually identical results were obtained, indicating that the reaction $$C + CC1_4 = 2CC1_2$$ was not important under the existing conditions. The ionization potential of CCl_2 was determined to be 13.2 \pm 0.2 eV, and the appearance potentials of the various $C-Cl_n^+$ ions were used to calculate approximate bond dissociation energies of the corresponding neutral species. Three groups have recently claimed to have isolated CCl₂ in low-temperature matrices and to have observed the molecule spectroscopically. Milligan and Jacox 51 prepared CCl₂ in a manner analogous to that described for their matrix synthesis of CF₂. Carbon atoms formed in situ from the photolysis of N₃CN were allowed to react with Cl₂ in an argon or nitrogen matrix at 14°K. Subsequent to irradiation, two new bands at 721 and 748 cm⁻¹ were observed in the infrared spectrum of the matrix. The relative intensity of the bands remained constant under varying conditions. The features disappeared rapidly on warmup of the matrix, with corresponding growth of bands assigned to CCl₄. Moreover, 13 C isotopic studies demonstrated that the compound in question contained only one carbon atom. The above observations were taken as evidence for the existence of CCl₂ as the species in question, and the bands at 721 and 748 cm⁻¹ were assigned to the stretching fundamentals of the molecule. The bond angle for CCl_2 was estimated to lie in the range $90\text{--}110^{\circ}$. The authors also reported a weak band system between 4400 and 5600 Å, with a band spacing of 305 cm⁻¹, to be associated with CCl_2 -containing matrices. By analogy with known electronic spectra of CF_2 , the system was attributed to a transition from the singlet ground state to the first excited state, with an extensive progression in the upper state bending vibration. Andrews 52 isolated CCl $_2$ in an argon matrix by means of the reaction of Li atoms with CCl $_4$. CCl $_3$ · radicals are formed from the abstraction of a Cl atom from CCl $_4$ by Li, and CCl $_2$ is produced from the secondary reaction $$Li + CC1_3^{\circ} = LiC1 + CC1_2$$ The loss of CCl₂ absorption on matrix warmup was accompanied by the growth of bands attributed to C_2 Cl₄. A complete isotopic analysis of the CCl₂ spectra supported the assignment of the stretching fundamentals as ν_1 = 719.5 and ν_3 = 745.7 cm⁻, in excellent agreement with the work of Milligan and Jacox. The weak ν_2 (bending) mode was not observed. The bond angle of CCl₂ was estimated to be $100^{\circ} \pm 9^{\circ}$, which strongly indicates that the observed species is in the singlet electronic configuration. Stretching force constants were calculated, and F_{C-Cl} was found to be lower than the corresponding value for CCl₄—a fact which Andrews claims to be evidence for lack of significant pibonded contributions to the C-Cl bonds. This result is surprising since doubly-bonded resonance hybrids have long been invoked to explain the stability of dihalocarbenes. About the same time as the publication of Milligan and Jacox' and Andrews' work, Steudel 53 claimed to have observed the infrared spectrum of CCl $_2$ condensed from the pyrolysis (or decomposition in a high-frequency discharge) of several C-Cl compounds. CCl_4 , C_2Cl_6 , $CHCl_3$, and $CSCl_2$ were passed individually through a furnace at 900° C, and immediately condensed on a KBr window at 83° K. In each instance, a broad band in the IR spectrum at 896 cm^{-1} was seen. The absorption diminished in intensity as the matrix was warmed, finally disappearing at $160-200^{\circ}$ K. Since the pyrolysis products in each case included C_2Cl_4 , CCl_2 was assumed to be the common intermediate in each reaction. Although CCl_2 may well have been an intermediate in the pyrolytic reactions reported by Steudel, it seems clear that the molecule is not responsible for the observed band at 896 cm⁻¹. Andrews⁵⁴ has recently described the infrared spectrum of matrix-isolated CCl_3 , and located one of the stretching modes (v_3) at 898 cm⁻¹. Since the reactions discussed in Steudel's work all produce C_2Cl_6 as well as C_2Cl_4 , he likely observed the CCl_3 radical. The area of gas-phase chemistry of dichloromethylene is as yet largely unexplored. Haszeldine and co-workers 37b have prepared CCl_2 from the pyrolysis of $\text{CCl}_3\text{SiCl}_3$ and CCl_3SiF_3 . The CCl_2 thus produced was observed to react with ethylene and a number of butenes in 85-95% yield, and with C_2Cl_4 in 69-85% yield. Addition to <u>cis-</u> or <u>trans-2-butene</u> occurred with retention of stereospecificity. No report of the dimerization of CCl_2 to C_2Cl_4 was given. These preparations belong to the general class of α -elimination reactions of trihaloalkyl organometallics, several of which were discussed in the section on CF_2 . In a variation of this type of work Skell and Cholod^{55} prepared CCl_2 in the gas phase by pyrolysing CHCl_3 at 1400°K . This pyrolysis was carried out immediately above a solution of olefins and the CCl_2 reacted with these olefins to give dichlorocyclopropane derivatives. The authors argue that this confirms the fact that free CCl_2 is indeed the intermediate in α -elimination reactions. Other than some solution chemistry very little indeed is known about CBr_2 and CI_2 or about mixed dihalocarbenes. Tyerman has observed the band spectrum of CFC1 between 3736-3466 Å. Its main feature is a progression of bands with an average spacing of 386 cm⁻¹. He also observed that, in contrast with CF_2 , CFC1 reacts with O_2 at room temperature. CFC1 + $$O_2 \rightarrow CFC10 + 0$$ ## C. Silicon Difluoride If the gaseous species resulting from passing SiF4 over elemental silicon at $1100-1400^{\circ}$ are condensed at temperatures below -80° and subsequently allowed to warm to room temperature, a waxy, tough white polymer of composition $(\text{SiF}_2)_n$ is obtained 57 . Mass spectrometric analyses of the gas phase products of the Si/SiF4 reaction indicate that SiF2 and SiF4 account for over 99% of the species present, with the percentage of SiF2 typically near $60\%^{58}$. Gaseous silicon difluoride is extraordinarily stable compared to dihalocarbenes and other silicon dihalides. Its half-life at
a pressure of 0.2 mm has been estimated to be 150 seconds 58 . Unlike other Group IV difluorides, SiF2 shows no tendency to form gas phase dimers, and is essentially unaffected by the addition of many other gases (except for oxygen, which facilitates formation of Si-O-F polymers on the walls of the apparatus). The low-temperature condensate of SiF_2 is a yellow-brown paramagnetic solid which remains unchanged when maintained at -196° . If, however, another substance is co-condensed with the SiF_2 , the low-temperature species can be made to react—usually on warming. The reaction chemistry thus investigated has proved to be quite extensive, and likely represents the most comprehensive study of the low-temperature chemistry of a high-temperature molecule. Results of the various examinations of the physical and chemical properties of SiF_2 , most of which have been conducted in this laboratory, will be discussed in the following sections. #### Gas Phase Spectra Ultraviolet Spectra. The first direct evidence for the existence of gas phase monomeric silicon difluoride resulted from observation of emission spectra of the molecule in electric discharges through SiF₄⁵⁹. The emission band system was subsequently extended extended however, both of these investigations are now thought to have resulted in erroneous vibrational numberings. The ultraviolet absorption spectrum was reported by Khanna, Besenbruch and Margrave have employed the "usual" preparative technique of reducing the tetrafluoride with the metal. They measured 28 absorption bands in the region between 2325 and 2130 Å. The most striking feature of the spectrum was the appearance of a series of bands with a periodicity of 252 cm⁻¹. This progression was correlated with the bending frequency of the excited state. As was the case of CF₂, no direct evidence for excitation of stretching frequencies was obtained. The vibrationless transition is thought to lie at 2266.4 Å, and is likely a ${}^{1}B_{1} \leftarrow {}^{1}A_{1}$ transition. Microwave Spectrum. Rao, et al. 62 were able to observe the microwave spectrum of SiF₂ by generating the molecule from the high-temperature Si/SiF₄ reaction and pumping the reaction mixture through an absorption cell. The Si-F bond distance and F-Si-F bond angle were calculated to be 1.591 $^{\circ}$ and 100 $^{\circ}$ 59°, respectively. The bond angle is smaller, and the bond distance longer than one might anticipate, suggesting that bonding involves mainly p² hybridization of the silicon orbitals. Infrared Spectrum. The infrared spectrum of gaseous SiF₂ has been recorded from 1050 to 400 cm⁻¹⁶³. Two absorption bands, centered at 855 and 872 cm⁻¹, were assigned to the symmetric (ν_1) and antisymmetric (ν_3) stretching modes, respectively. The assignment was rendered difficult because of the considerable overlap of the two bands. The fundamental bending frequency occurs below the instrumental range of the study, but a value of 345 cm⁻¹ can be determined from the ultraviolet study. The vibrational frequencies were combined with data from a refined microwave study and utilized to calculate force constants and revised thermodynamic functions. Mass Spectrum. There have been two investigations of the mass spectrum of SiF₂. In one experiment 58 the gaseous mixture of silicon fluorides obtained after passing SiF₄ over a column of Si held at 1150° C was passed into a 5 lt. bulb and thence into a mass spectrometer. Only SiF₄ and monomeric SiF₂ were observed; no polymeric species of SiF₂ were seen. By isolating the 5 lt. bulb containing the SiF₂ from the furnace and then monitoring the decay of SiF₂, it was estimated that SiF₂ has a half-life of 120 seconds. In a second investigation 65a SiF₂ was produced by heating a mixture of Si and CaF₂ to about 1500° K. From this study the following values were obtained: $\Delta H_{a,298}^{\circ}$ SiF₂,g = 12.33 ± 0.2 eV and thence $\Delta H_{f,298}^{\circ}$ SiF₂,g = -139 ± 2 kcal mole⁻¹. This value for the heat of formation of SiF₂ is not too close to that determined by a transpiration method, -148 ± 4 kcal mole^{-165b}. The discrepancy probably arises from the interaction between SiF₄ and SiF₂ to form Si_xF_{2x+2} at the higher pressures 65c . #### Studies of SiF₂ Condensate Infrared Spectrum. Since the reaction chemistry of SiF_2 known to date occurs at low temperatures in the condensed phase rather than in the gas phase, it is naturally of interest to investigate the low-temperature condensate formed from gaseous SiF2. The first such investigation was conducted by Bassler, Timms, and Margrave, and involved recording the infrared spectrum of matrix-isolated SiF2 between the temperatures of $20-40^{\circ}$ K. Figure (1) illustrates spectra obtained when a gas-phase SiF_2/SiF_4 mixture was condensed on a CsI window at 20°K and allowed to warm. notes that the peak at 811 cm⁻¹ disappears much faster than the rest of the spectrum as the matrix is warmed. Furthermore, when the furnace-to-window distance is increased to 10 feet, or when nitric oxide is co-condensed with the SiF2, the peak is absent altogether. This behavior suggests that the species responsible for the absorption is more reactive than monomeric singlet SiF2--perhaps triplet SiF2, excited singlet SiF2, or The second spectral feature evident on warmup is the appearance of two new bands at 830 and 892 cm^{-1} . These absorptions first appear at about 35° , grow to maximum intensity at 38° (at the expense of bands now known to be due to monomeric SiF2), and disappear rapidly on further warming. When the matrix is warmed to 50° K, the spectrum consists of broad bands identical with those of thin layers of $(SiF_2)_n$ at room temperature. These facts, especially when viewed in conjunction with the chemical characteristics of SiF_2 condensates, lead to the conclusion that the new bands are due to SiF2 dimer. The same study also examined some of the earlier Figure 1 - Infrared spectra of ${\rm SiF_2}$ in argon matrix during warm-up. The bands attributed to ${\rm Si_2F_4}$ are shown by arrows. SiF₂ chemistry by co-condensing potential reactants in the matrix. Most illuminating of these experiments was that involving BF₃. Previous work had shown that the reaction of SiF₂ with BF₃ (to be discussed in more detail later) leads to a series of compounds $BF_2(SiF_2)_nF$, with n at least two. When the BF_3/SiF_2 matrix was allowed to warm, a series of bands not associated with "pure" SiF_2 spectra appeared. The bands began to appear when those associated with $(SiF_2)_2$ reach a maximum. Moreover, the new absorptions corresponded closely with those of the gas-phase spectrum of $SiF_3SiF_2BF_2$, the major product of the SiF_2/BF_3 reaction on a macroscopic scale. Two re-examinations of the infrared spectra of matrix-isolated SiF₂ have been reported very recently 67,68 . This work was characterized by improved matrix isolation and by the use of both neon and argon matrices. Hastie, Hauge, and Margrave 67 established the stretching fundamentals in a Ne matrix to lie at 851 (ν_1) cm⁻¹ and 865 (ν_3) cm⁻¹, representing a red shift of approximately 8 cm⁻¹ from the gas phase. A bond angle of 97-102° was calculated from observed isotopic splitting; molecular geometry is thus not greatly perturbed by the matrix environment. Milligan and Jacox 68 , who generated SiF₂ from the vacuum photolysis of SiF₂H₂ or SiF₂D₂, were able to directly observe the bending fundamental of 343 cm⁻¹ (in an Ar matrix). These authors also measured a series of bands in the ultraviolet which correspond closely to those seen in the gas phase spectrum of SiF₂ (see ref. 61). ESR Studies. Both the low-temperature chemistry and the colored appearance of SiF_2 condensate strongly suggest the presence of radical species containing unpaired electrons. Consequently, an attempt was made in this laboratory ⁶⁹ to detect an electron spin resonance signal from the condensate. A gaseous SiF_2/SiF_4 mixture was condensed on a liquid nitrogencooled cold finger in the spectrometer cavity. The condensate generated in this manner gave rise to a broad signal whose intensity was invariant with time as long as the low temperature was maintained. The <u>g</u> factor for the resonance was 2.003 ± 0.002 , essentially that of a free electron. When the condensate was allowed to warm, the signal decayed rapidly, and could not be regenerated by subsequent cooling—indication that polymerization is irreversible and complete. The nature of the signal is similar to that found upon irradiation of polytetrafluoroethylene ⁷⁰. ### Reactions of SiF2 One of the first reactions of SiF_2 to be investigated was that with boron trifluoride 71 . The apparatus used to study this reaction is shown in Figure (2); this apparatus is typical of those used in all of the following reactions of SiF_2 . When SiF_2 and BF_3 are co-condensed at -196° , a green solid results. Warmup of the condensate leads to a number of volatile species, including the new compounds $SiF_3SiF_2BF_2$ and $SiF_3(SiF_2)_2BF_2$. The reaction products each contain at least two silicon atoms, and a gas phase Figure 2 - Apparatus used to study condensed phase reactions of SiF_2 . reaction does not occur. These observations lead to the suggestion of the mechanism shown below: $$2SiF_{2} \xrightarrow{\downarrow} SiF_{2}SiF_{2} \xrightarrow{\downarrow} SiF_{2}$$ $$iv + BF_{3} \qquad v + BF_{3}$$ $$(Si_{2}F_{4}BF_{3}) \qquad (Si_{3}F_{6}BF_{3})$$ $$\downarrow \qquad \qquad \downarrow$$ $$SiF_{3}SiF_{2}BF_{2} \qquad SiF_{3}SiF_{2}SiF_{2}BF_{2}$$ where reactions ii and iii are fast compared to iv and v. In a more recent study 72 a mixture of SiF₂ and SiF₄ was reacted with a mixture of BF and BF₃. The compound F₂Si(BF₂)₂ was isolated from the resultant products. Diboron tetrafluoride was also reacted with SiF₂ but any new products
that were formed were too unstable to be recovered. The next series of reactions examined involved simple unsaturated and aromatic hydrocarbons and their fluorocarbon analogs. The SiF₂/benzene reaction 73 produces a series of compounds of formulae $C_6H_6(SiF_2)_n$, with n=2 to at least 8. Both infrared and ultraviolet spectra indicate the absence of conjugated <u>pi</u>-systems for the n=3 (highest yield) product. Hydrolysis of the product mixture gives 1,4-cyclohexadiene. These facts, along with the proton nmr spectrum of the compound, permit the conclusion that the products possess the bridged structure shown $$(SiF_2)_n$$ where $n = 2-8$ The reaction of SiF_2 with ethylene 74 yields the two cyclic molecules $$\begin{array}{c|c} \mathsf{CH}_2 & \mathsf{-CH}_2 \\ \mid & \mid & \mathsf{and} \\ \mathsf{SiF}_2 - \mathsf{SiF}_2 \end{array} \qquad \begin{array}{c|c} \mathsf{CH}_2 - \mathsf{CH}_2 \\ \mathsf{CH}_2 & \mathsf{CH}_2 \\ \mathsf{SiF}_2 - \mathsf{SiF}_2 \end{array}$$ both of which are of quite limited stability. The $\mathrm{SiF}_2/\mathrm{acetylene}^{75}$ reaction proceeds similarly to give $$\begin{array}{c|cccc} CH &= & CH & & CH &- & CH \\ & & & & & // & & \\ SiF_2-SiF_2 & & & CH & CH \\ & & & & & \\ SiF_2-SiF_2 & & & \\ & & & & & \\ \end{array}$$ but here the six-membered ring is not isolated and is instead recovered as the rearrangement product, $HC\equiv C-SiF_2-SiF_2-CH=CH_2$. Another cyclic compound was isolated from the reaction of SiF_2 with butadiene 76 . The above reactions reinforce the "diradical" mechanism proposed for the BF $_3$ reaction. Hexafluorobenzene and the various fluorinated ethylenes 73,74 , however, react quite differently. The products in these reactions formally correspond to C-F bond insertion by an SiF $_2$ monomer. $$SiF_{2} + F \xrightarrow{F} F \rightarrow F \xrightarrow{F} F F + \underline{o}, \underline{m}, \underline{p} \quad C_{6}F_{4}(SiF_{3})_{2}$$ $$SiF_2 + CFH=CF_2 \rightarrow CFH=CFSiF_3 + C=CF_2$$ (cis and trans) Attack of a C-F bond was shown to be preferential to attack of a C=C bond. Several quite recent investigations into SiF_2 chemistry conducted in this laboratory have further indicated the versatility of SiF_2 as a reactant. Hydrogen sulfide reacts with SiF_2 to form predominantly SiF_2HSH and $Si_2F_5H^{77}$. The disilanethiol, SiF_2HSiF_2SH , expected from addition of H_2S to Si_2F_4 , was obtained in limited yield and was observed to be quite unstable. The $\rm H_2S$ reaction closely paralleled an earlier study of the $\rm SiF_2/GeH_4$ reaction 78 in which the products were the germylsilanes $\rm GeH_3(SiF_2)_nH$, $\rm n=1-3$. The $\rm n=1$ homolog was the major product and compound stability decreased dramatically with increasing $\rm n$. The reaction of SiF_2 and iodotrifluoromethane was studied ⁷⁹ in expectation of obtaining the products corresponding to "addition" of CF_3I to $(SiF_2)_n$ species, $CF_3(SiF_2)_nI$. The reaction of CF_3I with tetrafluoroethylene has been shown to yield (mainly) $CF_3CF_2CF_2I^{80}$. In fact, three separate homologous series of products were characterized: $$CF_3I + SiF_2 = CF_3(SiF_2)_nI$$ $n = 1,2$ $$SiF_3(SiF_2)_nI$$ $n = 0,1,2$ $$SiF_2I_2; SiF_2ISiF_2I$$ Excesses of CF_3I in the condensing mixture afforded large yields of CF_3SiF_2I ; excesses of SiF_2 resulted in the formation of most or all of the compounds listed above. The CF_3I reaction is of interest as regards reaction mechanisms in SiF_2 chemistry. As in many other reactions not involving unsaturated reactants, the product obtained in highest yield contained a single silicon atom. Moreover, while each product which contained a $-CF_3$ moiety also included an I atom, the converse was not true. Similar behavior was exhibited in the H_2S reaction: SiF_3H and Si_2F_5H were products; SiF_3SH and Si_2F_5SH were not. One may make two suggestions from these observations. The first is that diradical species play a major role in SiF_2 chemistry only when there is no bond of sufficient lability to be attacked by SiF_2 monomers. (Such reactive bonds include C-F in C_6F_6 ; C-I in CF_3I ; and the O-H and S-H bonds in H_2O and H_2S .) Secondly, attack by SiF_2 or $(SiF_2)_n$ often appears to be stepwise with, in the case of CF_3I , abstraction of an I atom followed by attack on the resultant CF_3 fragment or abstraction of iodine or fluorine from another molecule. The low-temperature condensate of SiF₂ and elemental iodine produces only SiF₂I₂ and SiF₃I, in the approximate ratio of 3:1, on warming. ⁷⁹ One must consider the question of whether compounds containing silicon-silicon bonds, such as SiF₃SiF₂I or SiF₂ISiF₂I, are formed in the reaction, and suffer Si-Si bond cleavage by unreacted I₂. Although some disilanes do undergo fission reactions with I₂, the hydrogen analogs of the compounds in question (i.e., Si₂H₅I and Si₂H₄I₂) react only to give further substitution, eventually yielding Si₂I₆⁸¹. Moreover, Si₂F₅I and Si₂F₄I₂, which were formed in the CF₃I/SiF₂ reaction, exhibited moderate stability in the presence of small amounts of I₂ generally present in the product mixtures of that reaction, and no evidence of these molecules was found even when large SiF₂/I₂ ratios were employed. It seems likely, then, that only SiF₂ monomers are involved in the I₂ reaction. Hydrolysis of a silicon-halogen bond often results in formation of oxygen-containing polymers such as silicones. However the siloxanes $\mathrm{Si}_2\mathrm{OC1}_6$ and $\mathrm{Si}_3\mathrm{O}_2\mathrm{Cl}_8$ can be recovered from careful hydrolysis of SiCl_4^{82a} . The reaction of SiF_4 with excess water produces fluorosilicic acid and hydrated silica, but if SiF_4 is passed over wet magnesium sulfate, one obtains the perfluorosiloxanes $\mathrm{Si}_2\mathrm{OF}_6$ and $\mathrm{Si}_3\mathrm{O}_2\mathrm{F}_8^{82b}$. The controlled hydrolysis of SiF_2 might therefore be expected to lead to any of several products. Several oxygen-containing molecules other than water have been observed to react with SiF_2 to produce homologous series of both linear and cyclic oxyfluorides SiF_2 alternatively, insertion of an SiF_2 monomer or telomer into an O-H bond would result in formation of the silanols $\mathrm{H}(\mathrm{SiF}_2)_n\mathrm{OH}$, which would almost certainly be unstable with respect to condensation to siloxanes. The $\mathrm{SiF}_2/\mathrm{H}_2\mathrm{O}$ reaction ⁸⁴ was conducted in a manner designed to minimize the contact of reactants before condensation in the cold trap. Reactions in which the $\mathrm{SiF}_2/\mathrm{H}_2\mathrm{O}$ ratio varied from 1:1 to 7:1 were conducted, but in all cases the only products not attributable to hydrolysis of SiF_4 were 1,1',2,2'-tetrafluorodisiloxane, $\mathrm{SiF}_2\mathrm{HOSiF}_2\mathrm{H}$, and a voluminous white polymer. No evidence for volatile compounds containing more than two silicon atoms was obtained. The polymer was of interest inasmuch as it, unlike virtually all other SiF_2 copolymers, was not pyrophoric. Infrared analysis demonstrated the absence of Si-H bonds in the polymer. The structure of the polymer is as yet unknown, but it must differ from the Si-O-F polymers formed in various other SiF_2 reactions. The reaction of SiF_2 with methanol⁸⁵ pursued a different course from the water reaction. Here, the reaction products were CH_3OSiF_3 , SiF_3H , and $(CH_3O)_2SiF_2$. Again, the competing reaction with SiF_4 represents a complication. In a separate experiment conducted under similar conditions, SiF_4 was shown to react readily with CH_3OH to form $CH_3OSiF_3 + HF$. Further methanolysis of the product to form $(CH_3O)_2SiF_2$, however, occurred only very slowly. From these and other observations, the authors formulated the following reaction scheme: $$SiF_4 + CH_3OH = SiF_3OCH_3 + HF$$ $SiF_2 + HF = SiF_3H$ $SiF_2 + CH_3OH = SiF_2HOCH_3$ $SiF_2HOCH_3 + CH_3OH = SiF_2(OCH_3)_2 + H_2$ Since the Si-H bond has been observed to react readily with methanol 86 , failure to observe SiF₂HOCH₃ is not surprising. Reactions of SiF₂ with NaF and LiF have been studied 87 . The alkali fluorides were vaporized from a Knudsen cell and co-condensed with approximately equal amounts of SiF₂ on a liquid-nitrogen cooled cold finger. The reactions are complicated by gas-phase reactions of SiF₂ and MF and also by the reactions of SiF₄ with the fluorides. The gas phase SiF₂/MF reactions lead to deposition of M₂SiF₆ and elemental silicon on the walls of the apparatus. The low-temperature condensate is a reddish-brown at -196°, and in all cases decomposes suddenly on warmup. The nature of the low-temperature solid is as yet undetermined. Conclusions. The utility and versatility of silicon difluoride as a chemical reagent has clearly been demonstrated. Although the region of reactions of SiF₂ with small (i.e., volatile) organic molecules has been rather well covered, there remain a great number of potentially rewarding reactions with inorganic substances. Rather than dwell on this point, however, the authors would prefer to mention two potential areas for expanding SiF₂ chemistry. No direct evidence for the observation of triplet gaseous SiF_2 exists. If such species could be generated in reasonably high yield (by mercury-sensitized photolysis, for example), their chemistry from both synthetic and kinetic points of view would merit considerable interest. Heicklen and co-workers have successfully conducted similar studies with triplet CF_2 as generated from the reaction of C_2F_4 with ground-state oxygen atoms. An aspect of Pease's early work with SiF_2 systems may have significance for the future of SiF_2 chemistry. In a variation of the usual "matrix-trapping" technique, Pease studied the reaction of SiF_2 with Br_2 by passing the gases through an 8" length of
tubing heated to 1200° prior to condensation. Although the same product, $\mathrm{SiF_2Br_2}$ was collected on warmup of the condensate, none of the usual room-temperature polymer was retained in the reaction trap-indicative of a quantitative gas-phase reaction. The heretofore unknown gaseous chemistry of $\mathrm{SiF_2}$ might well be discovered via a similar approach on a general basis. ## D. Other Silicon Dihalides SiCl₂ has long been postulated to be an intermediate in gas-phase pyrolyses of various chlorosilanes 88 , and in such reactions as that of Si and HCl to form SiCl₃H⁸⁹, or the reduction of perchlorosilanes with H₂⁹⁰. Direct observation of SiCl₂ monomer, or successful attempts to investigate the reaction chemistry of the monomer have, however, been very sparse until quite recently. This situation is in large part due to the fact that the gas-phase lifetimes of the heavier dihalides are several orders of magnitude less than that of SiF₂. Thus, although equilibrium measurements of the system Si + SiCl₄ = 2SiCl₂⁹¹ indicate that K_p $^{\sim}$ 1 at 1350° C, techniques similar to those utilized for production of SiF₂ lead to (SiCl₂)_n and perchlorosilanes⁹². Timms 93 has recently studied SiCl₂ reaction chemistry by employing fast pumping speeds and low $(5 \times 10^{-6} \text{ torr})$ permanent gas pressures. Under these conditions the SiCl₂, which is produced from reduction of the tetrahalide with the metal at 1350° , can successfully be condensed on cooled surfaces. Condensation of the equilibrium SiCl₂/SiCl₄ mixture at liquid nitrogen temperatures gives rise to a brown solid which turns white and evolves perchlorosilanes on warming. Co-condensation of PCl₃, BCl₃, or CCl₄ yields products corresponding to insertion of SiCl₂ into a M-Cl bond; products containing more than one silicon are not found. SiCl₂ may behave more similarly to SiF₂ (that is, diradicals may be important) in its reactions with unsaturated and aromatic compounds; Timms reported that such reactions lead to involatile polymers which incorporate the organic molecule. Spectroscopic observations of SiCl₂ have been reported by Asandi, Karim and Samuel⁹⁴ and Milligan and Jacox⁹⁵. The early work of Asandi <u>et al</u>. was concerned with the emission spectra from the products of an electric discharge through SiCl₄. The spectrum attributable to SiCl₂ consisted of a number of features superimposed on a continuous band from 3160 to 3550 Å. The spectral features were used to tentatively assign two of the ground state vibrational fundamentals as 250 and 540 cm⁻¹. Milligan and Jacox generated SiCl₂ from the vacuum photolysis of SiH₂Cl₂ (or SiD₂Cl₂) in argon matrices at 14° K. Examination of infrared spectra taken subsequent to photolysis revealed the stretching fundamentals to occur at 502 and 513 cm⁻¹. It was not possible to assign the symmetries of the two absorptions. Much of the known high-temperature chemistry of silicon-chlorine compounds is indirectly concerned with SiCl_2 . The reactions discussed below will serve as examples of those in which the intermediacy of SiCl_2 is indicated. The "direct synthesis" of $SiCl_3H$ from Si and HCl has been shown ⁸⁹ by kinetic studies to proceed via $$Si + 2HC1 = SiC1_2 + H_2$$ $SiC1_2 + HC1 = SiHC1_3$ Synthesis of organosilanes from silicon and RC1 is facilitated if a silicon-copper alloy is employed 96 . The catalytic action of the copper is due to the formation of CuC1, which then reacts with silicon to form SiC1₂: $$CH_3C1 + Cu \rightarrow CH_3C1-Cu$$ $$2CH_3C1-Cu \rightarrow 2CuC1 + CH_4 + C + H_2$$ $$Si + 2CuC1 \rightarrow SiC1_2 + 2Cu$$ $$SiC1_2 + CH_3C1-Cu \rightarrow CH_3SiC1_2$$ $$CH_3SiC1_2 + CH_3C1-Cu \rightarrow (CH_3)_2SiC1_2 + CuC1$$ The existence of $SiCl_2$ as an intermediate was indicated from an experiment in which the volatile product of a Si/CuCl reaction was allowed to react with CH_3Cl to form methylchlorosilanes. The high-temperature (1000-2000 K) reactions $$SiC1_4 + 2H_2 = Si + 4HC1$$ $SiC1_3H + H_2 = Si + 3HC1$ were examined by Sirtl and Reuschel 90 . Considerations of silicon yield as a function of temperature and mole fraction of reactants lead to the conclusion that SiCl $_2$ is an important reaction intermediate. The SiCl₄/Si reaction may lead to several different products, depending on reaction conditions. Thus, under conditions of high vacuum and fast pumping, SiCl₂ may be isolated by rapidly quenching the reaction products. Under less stringent vacuum conditions, $(SiCl_2)_n$ is deposited just beyond the hot zone, and the perchlorosilanes Si_nCl_{2n+2} can be trapped further downstream⁹². If, however, SiCl₄ is recycled over hot silicon in a closed system⁹⁷, viscous subchlorides of formulae Si_nCl_2 are obtained. The value of n varies from 12 at 900° to 16 at 1200°. The presumably cyclic compounds were characterized only by standard quantitative analyses; no spectroscopic or other physical data were reported. Bromination of the compounds produced some SiCl₃Br, indicating that at least some open-chain compounds were present. Since: SiCl_2 reacts readily with SiCl_4 under other conditions, it is difficult to explain the apparently quantitative production of SiCl_2 necessary to form high-molecular weight rings. At any rate, the closed system reaction certainly merits further investigation. Recent thermochemical data for $SiCl_2$ have been reported by Schafer and co-workers 91a , and by Teichmann and Wolf 91b from transpiration studies of the $SiCl_4/Si$ system. The heat of formation of the gaseous monomer now seems well established: $$\Delta H_f^o(SiCl_2, g, 298^oK) = -38.2 \pm 1.5 \text{ kcal.}$$ Mass spectrometric investigations of the silicon-chlorine system do not seem to have been made. Although for the dibromide and diiodide, the respective $SiX_4 + Si = 2SiX_2$ equilibria and the reaction chemistry of the $(SiX_2)_n$ polymers have been well characterized, the physical and chemical properties of the monomeric dihalides remain virtually unknown. In a preliminary report, Timms 98 related the formation of $SiBr_2$ in 90% yield with the apparatus and procedures employed in $SiCl_2$ production. The only reaction reported was that with BF_3 . The sole product was BF_2SiF_3 —presumably formed from disproportionation of the expected BF_2SiBr_2F . Production of SiI_2 under similar (i.e., low-pressure high-temperature) conditions is difficult due to the appreciable decomposition of SiI_2 to Si and I atoms at the temperatures required. Indeed, the diiodide has been utilized for the transportation and deposition of silicon 99 . ## E. Germanium Difluoride Germanium difluoride differs dramatically from CF_2 and SiF_2 in that it can be isolated as a stable compound at room temperature. Thus, it is surprising that few of its properties have been described. GeF₂ can be prepared by reducing GeF₄ with Ge at temperatures above $120^{\circ}\text{C}^{100}$. It can also be prepared by heating germanium powder with anhydrous HF (225°C , 16 hrs) 101 . $$Ge + HF \rightarrow GeF_2 + H_2$$ A number of the physical properties of GeF_2 have been measured including its infrared, ultraviolet and mass spectrum. The crystal structure of GeF_2 has also been determined. The ultraviolet absorption spectrum of GeF₂ has been measured by Hauge, Khanna and Margrave 102 . The spectrum is fairly simple and is probably due to the perpendicular $^{1}B_{1} \leftarrow X^{1}A_{1}$ transition. All progressions were explained in terms of bending frequencies of the lower and upper electronic states, which are v_{2} " = 263 cm⁻¹ and v_{2} ' = 164 cm⁻¹. The 0,0,0 - 0,0,0 transition is reported to lie at 2280.1 Å. The infrared spectrum of GeF₂ has also been reported ¹⁰³. Both the gas phase and the matrix-isolated infrared spectra were determined. It was necessary to study the matrix-isolated spectrum for two reasons. First, the examination of the ultraviolet absorption spectrum of GeF₂ indicated that at least ten of the bending states were populated, and second, germanium has five abundant isotopes. These suggested that the gas phase spectrum would be broad and ill defined at the temperatures required to vaporize GeF₂ (150°C). As anticipated the authors found that the gas phase spectrum of GeF₂ did consist of broad absorbances centered at 663 and 676 cm⁻¹. The spectrum of GeF_2 trapped in a neon matrix is shown in Figure 3. The ratio of GeF_2 /rare gas in the matrix was 1:1000. When new matrices were prepared similar spectra were obtained, even when the ratio of diluent was changed or the temperature of deposition was altered. This indicated that the splitting seen in the spectrum was due to isotope effects and was not due to matrix effects. As can be seen the intensities at the various peaks are in the same ratio as the abundant isotopes of germanium, providing additional evidence that the splitting is due to isotope effects. One may calculate the bond angle of GeF_2 from the isotope splitting. If one assumes that the lower frequency absorption is v_3 , the bond angle is $94 \pm 4^{\circ}$. If the higher frequency were v_3 the bond angle is $82 \pm 3^{\circ}$. Since CF_2 and SiF_2 have bond angles of 104.9° and 100.9° , respectively, the value of $94 \pm 4^{\circ}$ seems more likely to be the correct value. There have been several mass spectrometric examinations of GeF_2 . The first was by Ehlert and Margrave 65a . GeF_2 was prepared by heating Ge and CaF_2 . The appearance potential of GeF_2 was determined to be GeF_2 . The appearance potential of GeF_2 was determined to be GeF_2 . The appearance potential of GeF_2 was determined to be GeF_2 . The second the heat of atomization of GeF_2 by the second GeF_2 and GeF_2 and GeF_2 . The second investigation GeF_2 has required repetition since it is suspected
that possibly the sample used was not pure GeF_2 . In this more recent examination GeF_2 the vapor species over pure GeF_2 was monitored over the temperature range GeF_2 and GeF_2 was monitored over the temperature range GeF_2 and GeF_2 were found; no GeF_3 was detected. The thermodynamic data determined from this experiment are listed in Table 2. The heat of formation of GeF_2 has very recently been determined by fluorine bomb calorimetry ¹⁰⁵. The value of ΔH_f^o (GeF₂, c, 298.15°K) = -157.3 ± 1.0 kcal mole ⁻¹ was determined. This is probably the best value currently available. ${\bf Table~2}$ Thermodynamic Data from Mass Spectrometer Experiments | Reaction | ΔH ^O 365 | Δs_{365}^{o} | |----------------------------|---------------------|----------------------| | $GeF_2(c) = GeF_2(g)$ | 19.4 ± 1.0 | 44.7 ± 2.5 | | $2GeF_2(c) = (GeF_2)_2(g)$ | 18.3 ± 2.4 | 36.7 ± 6.0 | The crystal structure of GeF₂ was reported by Trotter, Akhtor and Bartlett 107 . They describe GeF₂ as "a strong fluorine-bridged chain polymer, in which the parallel chains are cross-linked by weak fluorine bridges. The structural unit of the strongly bridged chains is a trigonal pyramid of three fluorine atoms and an apical germanium atom." They found that the Ge-F distances are 1.79, 1.91 and 2.09 Å and the F-Ge-F angles are 85° , 85.6° and 91.6° . The two fluorine atoms at 2.09 Å are equivalent and join the germanium atoms into chains. The F atoms at 1.79 Å are weakly bonded to germanium atoms in neighboring chains whose distance is 2.57 Å. The poor packing of fluorine atoms in this arrangement is due to steric activity of the non-bonding valence electron pair on the germanium. The GeF₄ group is a distorted trigonal bipyramid with four fluorine atoms and a lone pair (in the equatorial plane) around a germanium atom. Only a few reactions of GeF_2 have been reported; however, those currently known indicate that GeF_2 is a strong reducing reagent. 100b GeF₂ + I₂ $$\rightarrow$$ GeF₂I₂ $\xrightarrow{\text{decomposes}}$ GeI₄ + GeF₄ GeF₂ + Cl₂ \rightarrow GeF₂Cl₂ $\xrightarrow{\text{decomposes}}$ GeCl₄ + GeF₄ 2GeF₂ + SeF₄ \rightarrow 2GeF₄ + Se GeF₂ + SO₃ \rightarrow explosion (products are probably GeOF₂, SO₂) GeF₂ + H₂O \rightarrow "Ge(OH)₂" Muetterties has described some of the reactions of GeF_2 in solution 108 . He isolated the salts, $KGeF_3$ and $CsGeF_3$, by dissolving GeF_2 in concentrated solutions of KF and CsF. In solution there must be rapid exchange between F^- and GeF_3^- since the ^{19}F nmr signal from a solution containing both species is midway between the signal due to either species alone. If a solution of GeF_2 is acidified, hydrogen is released. When GeF_2 is dissolved in dimethyl sulphoxide the complex $GeF_2 \cdot OS(CH_3)_2$ is formed. No report of bond insertion or additions to multiple bonds by GeF_2 exist. # F. Other Germanium Dihalides The other germanium dihalides have been known for a very long time. The first reported preparation of $GeCl_2$ was later withdrawn; Winkler claimed to have formed $GeCl_2$ by reacting heated germanium with HCl but the product was actually $HGeCl_3^{109}$. Moulton and Miller have shown that $HGeCl_3$ is very unstable, and decomposes to $GeCl_2$ and HCl when distilled at low pressure. $GeCl_2$ can be prepared by passing $GeCl_4$ over Ge at $350^{\circ}C^{111}$. It is also formed by the action of AgCl on Ge^{112} and by the action of Cl_2 on Ge at $650^{\circ}C^{113}$. When $GeCl_4$ is reduced by hydrogen, germanium subchlorides of limiting composition $GeCl_{0.9}$ are formed. When these subchlorides are distilled under vacuum at 210° , $GeCl_2$ can be isolated. GeBr $_2$ and GeI $_2$ are much easier to prepare than the difluoride or dichloride. GeBr $_2$ can be prepared by reducing HGeBr $_3$ with Zn, or by the vacuum distillation of HGeBr $_3$. GeI $_2$ can be very easily prepared by precipitation from Ge $^{2+}$ solutions. It can also be prepared by the action of HI on GeS. 117 Although GeF_2 has been examined by a variety of spectroscopic techniques the other dihalides have not been examined in such detail. The chemiluminescent emission spectrum of ${\rm GeCl}_2$ was obtained by burning ${\rm GeCl}_4$ in potassium vapor using a diffusion flame technique. The spectrum consisted of a series of closely spaced diffuse bands in the region 4900-4100 Å with an underlying continuum. The bands resemble those of ${\rm SnCl}_2$. These results were taken to indicate that $GeCl_2$ is non-linear in the gas phase. If the diffuse nature of the bands is due to predissociation, then the dissociation energy of the ClGe-Cl bond is less than 64 kcal. Both the absorption and the emission spectra of GeCl₂ were observed by Hastie, Hauge and Margrave 119 . GeCl₂ was produced either by vaporization from liquid GeCl₂ or by the reduction of GeCl₄ with Ge. Absorption occurred between 3301-3140 Å. The transition is probably $X^1A_1 \rightarrow {}^1B_1$, as is observed for CF₂, SiF₂ and GeF₂. Bands in the spectrum were interpreted in terms of progressions in the bending frequencies of the lower and upper states. The ground state bending frequency is 162 cm^{-1} and that of the upper state is 95 cm^{-1} . A microwave discharge through GeCl₄ vapor at low pressure produced a continuous emission from 3125 to 3341 $^{\circ}A_{2}$ the same range as that observed in the absorption spectrum of GeCl₂. The thermodynamics of the reactions Ge (s) + GeX₄ (g) $$\rightarrow$$ 2GeX₂ (g) $X = C1$, Br, I have been studied by a number of workers using weight loss methods, static vapor pressure measurements and mass spectrometric techniques. The mass spectrometric investigation showed that $GeCl_2$ and $GeBr_2$ do not form polymers in the gas phase in contrast with the behavior of GeF_2 . The numerical results of these various investigations are summarized in Table 3^{120} . Reactions of Germanium Dihalides. Due to its ease of preparation, ${\rm GeI}_2$ possesses the best characterized reaction chemistry of the dihalides of germanium. Heats of Formation and Atomization of Gaseous Germanium Dihalides, and Stabilities of Ge-X Bonds, kcal mole-1 Table 3 | Molecule | ΔH _{f,298} | ΔHatoms | E(Ge-X) | |-------------------|---------------------------------|--------------------------------|--------------------------------| | GeF ₂ | -136.9 ± 2 ^{104b} ,105 | 266.3 ± 2 ¹⁰⁴ a,105 | 133.2 ± 1 ^{104a} ,105 | | GeCl ₂ | $-42 \pm 1^{120},121$ | 188 ± 5 ¹²⁰ | 94 ± 2^{120} | | GeBr ₂ | -13 ± 1^{120} | 164 ± 5^{120} | 82 ± 2^{120} | | GeI ₂ | 13 ± 2^{123} | 142 ± 5^{123} | 71 ± 2^{123} | GeCl2, GeBr2 and GeI2 all undergo the following reactions: $$GeX_2 + X_2 \rightarrow GeX_4$$ $GeCl_2$ and $GeBr_2$ hydrolyze to give " $Ge(OH)_2$ ". $GeCl_2$ begins to decompose at $75^{\circ}C$, and reacts with H_2 \$ to give GeS. 124 Just as CX_2 is formed in solution by the basic hydrolysis of CHX_3 , so can GeX_2 be formed from $HGeX_3$ in solution. For example, when $HGeCl_3$ is dissolved in ether it forms the complex $2(Et_2O)HGeCl_3$ which is thought to have the ionic structure $$\left[\text{Et}_2\text{O} \rightarrow \text{H}^+ \leftarrow \text{OEt}_2\right] \left[\text{GeCl}_3\right]$$ and thus it readily forms GeCl_2 . Typical reactions of the complex are $$2(\text{Et}_20) \cdot \text{HGeCl}_3 \rightarrow \left[\text{GeCl}_2\right] + 2\text{Et}_20 \cdot \text{HCl}$$ $$GeCl_2 + \text{HC=CH} \rightarrow \left[\text{C=C}\right] 2 \xrightarrow{\text{moles}} GeXCl_2 - \text{CH=CH-GeCl}_3 + \left[\text{-CH=CH-GeCl}_2\right] n$$ $$X = H, Cl$$ $$GeCl_2 + \text{H}_2\text{C=CH}_2 \rightarrow \left[\text{H}_2\text{C-CH}_2\right] 2 \xrightarrow{\text{moles}} GeXCl_2 - \text{CH}_2 - \text{CH}_2 - \text{GeCl}_3 + \left[\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-GeCl}_3\right] + \left[\text{-CH}_2\text{-CH}_2\text{-GeCl}_2\right] n$$ $$GeCl_2 + \text{H}_2\text{C=CH}_2 - \text{CH=CH}_2 \rightarrow \left[\text{H}_2\text{C-CH-CH=CH}_2\right] \rightarrow \left[\text{GeCl}_2\right] n$$ ${\tt GeBr}_2$ is observed to undergo similar reactions 124 . No direct reaction was observed between carbonyl compounds and germanium dihalides 125 . The reactions of GeI_2 have received more attention. GeI_2 will react with a carbon halogen bond. 126 $$GeI_2 + RI \rightarrow RGeI_3$$ $$R = Bu, Ph, CH_2I, I(CH_2)_2.$$ $$GeI_2 + BuBr \rightarrow trihalogenated products \xrightarrow{EtMgBr} Et_3GeBu$$ $$GeI_2 + ICH_2OMe \rightarrow I_3Ge-CH_2-OMe \rightarrow Bu_3GeCH_2OMe$$ $$GeI_2 + EtCOOCH_2I \rightarrow I_3Ge-CH_2-CO_2Et.$$ Most of these reactions were carried out in sealed tubes. GeI $_2$ also reacts with multiple bonds. 127 R-C=C-R + GeI₂ $$\rightarrow$$ R C GeI₂ R-C C-R C-C-GeI₂- R R-C C-R C-C-GeI₂- R-C C-R GeI_2 inserts into metal-metal bonds, 128,129 $$\left[\pi - C_5 H_5 Fe(CO)_2 \right]_2 + GeI_2 \rightarrow \left[\pi - C_5 H_5 Fe(CO)_2 \right]_2 GeI_2$$ $$(CO)_4 CoCo(CO)_4 + GeI_2 \rightarrow (CO)_4 Co-GeI_2 - Co(CO)_4.$$ Similar reactions have been observed for $GeCl_2^{130}$. The halide atoms in these compounds are very labile and are easily changed for groups such as -Me, -OCH₃, -SC₂H₅, -NCS, and -OCOCH₃ or other halides ¹²⁸, 130. GeI_2 also reacts with organo-mercury compounds. 131 $$GeI_2 + HgEt_2 \rightarrow GeEt_2 + HgI_2$$ $GeI_2 + HgBu_2 \rightarrow Bu_2IGe-GeIBu_2$ (dissolved in acetone) ${ m GeI}_2$ is also of considerable importance in the transport and purification of germanium. # G. Tin and Lead Dihalides The dihalides of tin and lead are so very well known that it is unnecessary to summarize the extensive chemical knowledge of these compounds. The chemistry of divalent tin and lead has been reviewed several times recently. A few points that are relevant to the material already discussed will be made. The ultraviolet absorption spectra of gaseous
SnF_2 , $\operatorname{SnC1}_2$, PbF_2 and $\operatorname{PbC1}_2$ have all been recently reported. For SnF_2 a weak absorption with a regular banded structure was seen at around 2425 Å. The bending frequency of the ground electronic state is $180~\mathrm{cm}^{-1}$ and for the excited state is $120~\mathrm{cm}^{-1}$. For PbF_2 no discrete band system was observed; a plot of the bending frequencies of the other Group IVB difluorides against the reciprocal of their internuclear separations enabled v_2 " to be estimated as $145~\mathrm{cm}^{-1}$ and v_2 ' $105~\mathrm{cm}^{-1}$. For SnF_2 and PbF_2 the 0,0,0-0,0 transitions are estimated to occur at 40,741 and $40,560~\mathrm{cm}^{-1}$, respectively. 133 In the ultraviolet $SnCl_2$ showed a continuous absorption with a maximum intensity at about 21,044 cm⁻¹(3220 Å). The absence of discrete bands is probably due to overlapping of closely spaced diffuse bands. For $PbCl_2$ three regions of continuous absorption were observed. These had maximum intensities at 3600, 3200 and below 2916 Å. The $SnCl_2$ and $PbCl_2$ spectra were interpreted as being due to ${}^1A_1 \rightarrow {}^1B_1$ transitions. The mass spectra of the vapors over hot SnF_2 and PbF_2 were also examined recently. 134 SnF_2 undergoes some polymerization. Species found over molten SnF_2 at $616^{\mathrm{O}}\mathrm{K}$ were SnF_2 79.5%, $\mathrm{Sn}_2\mathrm{F}_4$ 20.5%, and $\mathrm{Sn}_3\mathrm{F}_6$ 0.027%. No dimers were found over PbF_2 ; this was probably due to the ready decomposition of these dimers into PbF4 and Pb. The heats of dimerization for all of the Group IVB diffuorides are listed in Table 4. 135 In the same study a number of the thermodynamic functions of the fluorides of tin and lead were measured using Knudsen cell effusion techniques. 134 These values do not agree very well with previously available data. This area has recently been surveyed and interested readers should refer to this survey. 136 ## Conclusions A varied and productive chemistry is now established for most of the Group IV dihalides. By combining high temperature and low temperature techniques, one may now isolate and observe molecular parameters, as well as physical and chemical properties for AX_2 -species. The CX_2 (carbenes) and SiX_2 (silylenes) molecules have a rich chemistry and provide new and unique opportunities for organic and organo-metallic syntheses. #### Acknowledgments Research in the areas of high temperature chemistry, fluorine chemistry, optical and mass spectroscopy and thermodynamics has been supported at Rice University by the United States Atomic Energy Commission, by the U. S. Army Research Office (Durham), by the National Aeronautics and Space Administration, by the Petroleum Research Fund of the American Chemical Society and by the Robert A. Welch Foundation. $\label{table 4} \label{table 4}$ Heats of Dimerization of Group IVb Difluorides (kcal mole $^{-1}$) $(MX_2)_n(g) \rightarrow (MX_2)_{n-1}(g) + MX_2(g)$ | Molecule | n = 2 | |------------------|----------| | CF ₂ | 76.3 ± 3 | | SiF ₂ | | | GeF ₂ | 18.3 ± 3 | | SnF_2 | 39 ± 2 | | | | PbF₂ ### REFERENCES - T. L. Cottrell, "The Strengths of Chemical Bonds," Academic Press Inc., New York, 2nd ed., 1958. - 2. M. C. Day and J. Selbin, "Theoretical Inorganic Chemistry," Reinhold, New York, p 212-13, 1962. - 3. F. A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry," Wiley and Sons, 2nd ed., New York, p 456, 1966; A. L. Allred and E. G. Rochow, J. Inorg. Nucl. Chem., 5, 264 (1958); L. Pauling, "The Nature of the Chemical Bond," Cornell Univ. Press, 3rd ed., p 126 (1959); R. T. Sanderson, "Inorganic Chemistry," Reinhold, New York, p 78 (1967). - J. Hine, "Divalent Carbon," The Ronald Press Co., New York, 1964; W. Kirmse, "Carbene Chemistry," Academic Press Inc., New York, 1964; W. E. Parham and E. E. Schweizerm, Org. Reactions, 13, 55 (1963); E. Chinoporos, Chem. Rev., 63, 235 (1963). - W. Mahler, Inorg. Chem., 2, 230 (1963); R. G. Carvell, R. C. Dobbie and W. J. R. Tyerman, Canad. J. Chem., 45, 2849 (1967). - 6. F. W. Dalby, J. Chem. Phys., 41, 2297 (1964). - 7. J. Heicklen, V. Knight and S. Greene, J. Chem. Phys., 42, 221 (1965). - 8. R. A. Mitsch, J. Heterocyclic Chem., 1, 59 (1964). - T. Johnston and J. Heicklen, J. Chem. Phys., 47, 475 (1967). - 10. Apparently most fluorocarbons form CF₂ on photolysis, pyrolysis or under the influence of an electric discharge. For a summary of the compounds used and the processes involved for producing CF₂ in this way see: J. P. Simons and A. J. Yarwood, Nature, <u>192</u>, 943 (1961); J. Heicklen, N. Cohen and D. Saunders, J. Phys. Chem., 69,1774 (1965). - 11. J. P. Simons and A. J. Yarwood, Nature, 187, 316 (1960). - 12. W. Batey and A. B. Trenwith, J. Chem. Soc., 1961, 1388. - 13. M. Lenzi and A. Mele, J. Chem. Phys., <u>43</u>, 1974 (1965). - 14. H. C. Clark and C. J. Willis, J. Am. Chem. Soc., 82, 1888 (1960). - 15. J. M. Birchall, R. N. Haszeldine and D. W. Roberts, Chem. Comm., 1967, 287. B. Atkinson and D. McKeagan, Chem. Comm., 1966, 189. - N. Cohen and H. Heicklen, Aerospace Corp. Report TDR-469 (5250-40)-2, Nov. 20, 1964. - 17. J. L. Margrave and K. Wieland, J. Chem. Phys., <u>21</u>, 1552 (1953); L. S. Nelson and N. A. Kuebler, J. Chem. Phys., <u>37</u>, 47 (1962). - 18. A. P. Modica and J. E. LaGraff, J. Chem. Phys., <u>44</u>, 3375 (1966). - 19. A. P. Modica and J. E. LaGraff, J. Chem. Phys., 43, 3383 (1965);44, 1585 (1966), 45, 4729 (1966). - 20. S. V. R. Mastrangelo, J. Am. Chem. Soc., 84, 1122 (1962). - 21. N. C. Craig, T. Hu and P. H. Martyn, J. Phys. Chem., <u>72</u>, 2234 (1968). - 22. P. Venkateswarlu, Phys. Rev., 77, 676 (1950). - 23. R. K. Laird, E. B. Andrews and R. F. Barrow, Trans. Faraday Soc., 46, 803 (1959). - 24. D. E. Mann and B. A. Thrush, J. Chem. Phys., 33, 1732 (1960); A. M. Bass and D. E. Mann, J. Chem. Phys., 36, 3501 (1962); J. P. Simons, J. Chem. Soc., 1965, 5406; B. A. Thrush and J. J. Zwolenik, Trans. Faraday Soc., 59, 582 (1963). - 25. J. P. Simons, J. Chem. Soc., 1965, 5406. - V. M. Khanna, G. Besenbruch and J. L. Margrave, J. Chem. Phys., <u>46</u>, 2310 (1967). - 27. C. W. Matthews, J. Chem. Phys., 45, 1068 (1966). - 28. D. E. Milligan, D. E. Mann, M. E. Jacox and R. A. Mitsch, J. Chem. Phys., <u>41</u>, 1199 (1964). - 29. K. C. Herr and G. C. Pimentel, Appl. Opt., 4, 25 (1965). - 30. F. X. Powell and D. A. Lide, Jr., J. Chem. Phys., 45, 1067 (1966). - 31. C. W. W. Hofman and R. L. Livingston, J. Chem. Phys., <u>21</u>, 565 (1953). - 32. J. L. Margrave, J. Chem. Phys., 31, 1432 (1954). - 33. K. F. Zmbov, O. M. Uy and J. L. Margrave, J. Am. Chem. Soc., <u>90</u>, 5090 (1968). - 34. J. W. Edwards and P. A. Small, Nature, <u>202</u>, 1329 (1964); F. Gozzo and C. R. Patrick, Nature, 202, 80 (1964). - 35. M. W. Farlow, U. S. Patent 2, 709, 142 (May 21st, 1955). - 36. B. A. Thrush and J. J. Zwolenik, Trans. Faraday, Soc., 59, 582 (1963). - 37. a) D. Sayferth, F. M. Armbrech, Jr. and B. Schneider, J. Am. Chem. Soc., <u>91</u>, 1954 (1969) and references herein. - b) W. T. Beran, R. N. Haszeldine and J. C. Young, Chem. and Ind., 1961, 789. - 38. W. Mahler, J. Am. Chem. Soc., 84, 4600 (1962); 90, 523 (1963). - 39. M. S. Roasch, U. S. Patent 2,424,667 July 29, 1947. - 40. R. A. Mitsch, J. Heterocyclic Chem., <u>1</u>, 233 (1964); J. Heterocyclic Chem., <u>1</u>, 271 (1964); R. A. Mitsch and E. W. Neuvar, J. Phys. Chem., <u>70</u>, 546 (1966); R. A. Mitsch, E. W. Neuvar and P. H. Ogden, J. Heterocyclic Chem., <u>4</u>, 389 (1967); R. A. Mitsch and J. E. Robertson, J. Heterocyclic Chem., <u>2</u>, 152 (1965). - 41. B. Atkinson and D. McKeagan, Chem. Comm., 1966, 189. - 42. A. P. Modica, J. Chem. Phys., <u>46</u>, 3663 (1967). - 43. S. Andreades, Chem. Ind. (London), <u>1962</u>, 732. - 44. D. E. Milligan and M. E. Jacox, J. Chem. Phys., <u>48</u>, 2265 (1968). - 45. J. P. Simons and A. J. Yarwood, Nature, <u>187</u>, 316 (1960). - 46. N. Cohen and J. Heicklen, J. Chem. Phys., <u>43</u>, 871 (1965). - 47. N. Cohen and J. Heicklen, J. Phys. Chem., <u>70</u>, 3082 (1966); J. Heicklen and V. Knight, J. Phys. Chem., <u>70</u>, 3893 (1966). - 48. a) M. Schmeisser and H. Schröter, Angew. Chem., 72, 349 (1960); - b) M. Schmeisser, H. Schröter, H. Schilder, J. Massonne and F. Rosskopf, Ber., <u>95</u>, 1648 (1962). - 49. C. G. Fink and C. F. Bonilla, J. Phys. Chem., 37, 1135 (1933). - 50. L. P. Blanchard and P. Le Goff, Canad. J. Chem., 35, 89 (1957). - 51. D. E. Milligan and M. E. Jacox, J. Chem. Phys., <u>47</u>, 703 (1967). - 52. L. Andrews, J. Chem. Phys., 48, 979 (1968). - 53. R. Steudel, Tetrahedron Lett., 1967, 1845. - 54. L. Andrews, J. Chem. Phys., 48, 972 (1968). - 55. P. S. Skell and M. S. Cholod, J. Am. Chem. Soc., 91, 6035 (1969). - 56. W. J. R. Tyerman, Chem. Comm., <u>1968</u>, 392. - 57. D. C. Pease, U. S. Patent 2,840,588, 24 June, 1958. - 58. P. L. Timms, R. A. Kent, T. C. Ehlert and J. L. Margrave, J. Am. Chem. Soc., 87, 2824 (1965). - 59. J. W. C. Johns, G. W. Chantry and R. F. Barrow, Trans. Faraday, Soc., 54, 1589 (1958). - 60. D. R. Rao and P. Venkateswarlu, J. Mol. Spectroscopy, 7, 287 (1961). - 61. V. M. Khanna, G. Besenbruch and J. L. Margrave, J. Chem. Phys., <u>46</u>, 2310 (1960). - 62. V. M. Rao, R. F. Curl, P. L. Timms and J. L. Margrave, J. Chem. Phys., 43, 2557 (1965). - 63. V. M. Khanna, R. Hauge, R. F. Curl, Jr., and J. L. Margrave, J. Chem. Phys., 47, 5031 (1967). - 64. V. M. Rao and R. F. Curl, J. Chem. Phys., 45, 2032 (1966). - 65. a) T. C. Ehlert and J. L. Margrave, J. Chem. Phys., <u>41</u>, 1066 (1964); - b) J. L. Margrave, A. S. Kana'an and D. C. Pease, J. Phys. Chem., 66, 1200 (1962). - c) A. S. Kana'an and J. L. Margrave, Inorg. Chem., 3, 1037 (1964). - 66. J. M. Bassler, P. L. Timms and J. L. Margrave, Inorg. Chem., <u>5</u>, 729 (1966). - 67. J. W.
Hastie, R. H. Hauge and J. L. Margrave, J. Am. Chem. Soc., <u>91</u>, 2536 (1969). - 68. D. E. Milligan and M. E. Jacox, J. Chem. Phys., 49, 4269 (1968). - 69. J. C. Thompson, H. P. Hopkins and J. L. Margrave, J. Am. Chem. Soc., 90, 901 (1968). - 70. E. E. Schneider, Disc. Faraday Soc., 19, 158 (1955); M. A. Bruk, A. D'Abkin and P. M. Khomlkovskil, Dok. Akad. Nauk. SSSR, 149, 1322 (1963). - 71. P. L. Timms, T. C. Ehlert, J. L. Margrave, F. E. Brinckman, T. C. Farrar and T. D. Coyle, J. Am. Chem. Soc., <u>87</u>, 3819 (1965). J. L. Margrave and P. L. Timms, U. S. Patent No. 3,379,512 (1968). - 72. R. W. Kirk and P. L. Timms, J. Am. Chem. Soc., 91, 6315 (1969). - 73. P. L. Timms, D. D. Stump, R. A. Kent, and J. L. Margrave, J. Am. Chem. Soc., <u>88</u>, 940 (1966); J. L. Margrave and P. L. Timms, U. S. Patent No. 3,485,862 (1969). - 74. J. C. Thompson, J. L. Margrave, and P. L. Timms, Chem. Comm., <u>1966</u>, 566. - 75. J. C. Thompson, J. L. Margrave, P. L. Timms and C. S. Liu, unpublished results. - 76. J. C. Thompson and J. L. Margrave, Inorg. Chem., 9, in press (1970). - 77. K. G. Sharp and J. L. Margrave, Inorg. Chem., 8, 2655, (1969). - 78. D. Solan and P. L. Timms, Inorg. Chem., 7, 2157 (1968). - 79. J. L. Margrave, K. G. Sharp and P. W. Wilson, J. Inorg. Nucl. Chem., in press. - 80. R. N. Haszeldine, J. Chem. Soc., 1949, 2856, also 1963, 374. - 81. E. A. V. Ebsworth, "Volatile Silicon Compounds," Pergamon Press, New York, 1963, p 91. - 82. a) J. Goubeau and R. Warncke, Z. Anorg. Chem., <u>259</u>, 109 (1949); b) M. Chaigneau, Compt. Rend., 266, 1053 (1968). - 83. J. L. Margrave, K. G. Sharp and P. W. Wilson, unpublished results. - 84. J. L. Margrave, K. G. Sharp and P. W. Wilson, J. Am. Chem. Soc., 92, 1530 (1970). - 85. J. L. Margrave, K. G. Sharp and P. W. Wilson, Inorg. Nucl. Chem. Letters, 5, 995 (1969). - 86. W. S. Miller, J. S. Peake and W. H. Nebergall, J. Am. Chem. Soc., 79, 5604 (1957). - 87. T. W. Harbaugh and J. L. Margrave, unpublished results, (1968). - 88. K. Wieland and M. Heise, Angew. Chem., <u>63</u>, 438 (1951); R. Schwarz <u>et. al.</u>, Chem. Ber., <u>80</u>, 444 (1947). - 89. J. Joklik and V. Bazant, Collect. Czech. Chem. Comm., 29, 603 (1964). - 90. E. Sirtl and K. Reuschel, Z. Anorg. Allgem. Chem., 332, 113 (1964). - 91. a) H. Schafer, H. Bruderreck and B. Morcher, Z. Anorg. Allgem. Chem., 352, 122 (1967); - b) R. Teichmann and E. Wolf, Z. Anorg. Allgem. Chem., 347, 145 (1966). - 92. M. Schmeisser and P. Voss, Z. Anorg. Allgem. Chem., 334, 50 (1964). - 93. P. L. Timms, Inorg. Chem., <u>7</u>, 387 (1968). - 94. R. Asundi, M. Karim and R. Samuel, Proc. Phys. Soc. (London), <u>50</u>, 581 (1938). - 95. D. E. Milligan and M. E. Jacox, J. Chem. Phys., 49, 1938 (1968). - 96. S. Golubtsov, K. Andrianov, R. Turetskaya, Z. Belikova, I. Trofinova and K. Morozov, Doklady Akad. Nauk SSSR, 151, 1329 (1963). - 97. P. Schenk and H. Bloching, Z. Anorg. Allgem. Chem., 334, 57 (1964). - 98. P. L. Timms, Abstract of 154th ACS National Meeting. - M. Schmeisser and K. Friederich, Angew. Chem., <u>76</u>, 782 (1964); H. Schäfer, German Patent 966,471, August 8, 1957. - 100. a) L. M. Dennis and A. W. Laubengayer, Z. Physik Chem., <u>130</u>, 520 (1927); - b) N. Bartlett and K. C. Yu, Can. J. Chem., 39, 80 (1961). - 101. E. L. Muetterties and J. E. Castle, J. Inorg. Nucl. Chem., 18, 148 (1964). - 102. R. Hauge, V. M. Khanna and J. L. Margrave, J. Mol. Spec., <u>27</u>, 143 (1968). - 103. J. W. Hastie, R. Hauge, and J. L. Margrave, J. Phys. Chem., <u>72</u>, 4492 (1968). - 104. a) K. F. Zmbov, J. W. Hastie, R. Hauge and J. L. Margrave, Inorg. Chem., 7, 608 (1968). - b) G. P. Adams, R. P. Steiger, J. L. Margrave and P. W. Wilson, unpublished results. - 105. G. P. Adams, J. L. Margrave and P. W. Wilson, unpublished results. - 106. Apparently GeF_2 reacts with GeF_4 to form either a complex or a new compound. Possibly Zmbov <u>et al</u> used this new compound instead of GeF_2 since they prepared their GeF_2 sample in an excess of GeF_4 . This reaction is being investigated. - 107. J. Trotter, M. Akhtar and N. Bartlett, J. Chem. Soc. (A), 1966, 30. - 108. E. L. Muetterties, Inorg. Chem., $\underline{1}$, 342 (1962). - 109. J. Winkler, J. prakt Chem., 142, 222 (1886); 144, 188 (1887). - 110. C. W. Moulton and J. G. Miller, J. Am. Chem. Soc., 78, 2702 (1956). - 111. L. M. Dennis and H. L. Hunter, J. Am. Chem. Soc., <u>51</u>, 1151 (1929). - 112. K. H. Lieser, H. Elias and H. W. Kohlschutter, Z. Anorg. Allgem. Chem., 313, 199 (1961). - 113. H. R. Harner and D. S. Trahin, U. S. Patent 2,767,052. - 114. R. Schwarz and E. Baronetzky, Naturwissenschaften, 39, 256 (1952). - 115. F. M. Brewer and L. M. Dennis, J. Phys. Chem., 31, 1526 (1927). - 116. L. S. Foster, Inorg. Synthesis, 3, 63. - 117. E. A. Flood, L. S. Foster, E. W. Pietrusza, Inorg. Synthesis, 2, 106. - 118. A. Tewarson and H. B. Plamer, J. Mol. Spectry, 22, 117 (1967). - 119. J. W. Hastie, R. H. Hauge and J. L. Margrave, J. Mol. Spectry, <u>29</u>, 152 (1969). - 120. O. M. Uy, D. W. Muenow and J. L. Margrave, Trans. Faraday Soc. <u>65</u>, 1296 (1969) and references herein. - 121. T. O. Sedgwick, J. Electrochem Soc., 112, 496 (1965). - 122. R. C. Feber, U. S. A. E. C. Rept. LA-3164 (1965). - 123. F. Jona, R. F. Lever and H. R. Wendt, J. Electrochem Soc., <u>111</u>, 413 (1964); D. F. Evans and R. E. Richards, J. Chem. Soc., <u>1292</u> (1952). - 124. Various of these reactions are reviewed by O. M. Nefedov and M. N. Manakov, Angew Chem. internat. Edit., 5, pp 1027-9 (1964). - 125. S. P. Kolesnikov, S. L. Perlmutter and O. M. Nefedov, Doklady Akad. Nauk SSSR, 180, 112 (1968). - 126. M. Lesbre, P. Mazerolles and G. Manuel, Compt. Rend., <u>257</u>, 2303 (1963). - 127. M. E. Volpin, Y. D. Koreshkov, V. G. Dulova, and D. N. Kursanov, Tetrahedron, 18, 107 (1962); F. Johnson, R. S. Gohlke and W.A. Nasutavicus, J. Organometallic Chem., 3, 233 (1965). - 128. N. Flitcroft, D. A. Harbourne, I. Paul, P. M. Tucker and F. G. A. Stone, J. Chem. Soc. (A), <u>1966</u>, 1130. - 129. D. J. Patmore and W. R. G. Graham, Inorg. Chem., <u>5</u>, 1405 (1966). - 130. A. N. Nesmeyanov, K. N. Anisimov, N. E. Kolobova and F. S. Denisov, Izv. Akad. Nauk SSSR, Ser. Khim., 1968, 142. - 131. G. Jacobs, Compt Rend., 238, 1825 (1954); L. I. Emelyanova, V. N. Vinogradova, L. G. Makarova and A. N. Nesmeyanov, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 1962, 53. - 132. For a recent review see J. D. Donaldson, "Progress in Inorganic Chemistry", Ed. F. A. Cotton, 8, pp. 287-356, Interscience, New York, 1967. - 133. R. H. Hauge, J. W. Hastie and J. L. Margrave, J. Phys. Chem., <u>72</u>, 3510 (1968). - 134. K. Zmbov, J. W. Hastie and J. L. Margrave, Trans. Faraday Soc. <u>64</u>, 861 13 (1968). - 135. K. Zmbov, J. W. Hastie and J. L. Margrave, High Temperature Technology p 345, Butterworths; London, 1969. - 136. G. P. Adams, J. L. Margrave, R. P. Steiger and P. W. Wilson, submitted to J. Chem. Thermodynamics, 1970.